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OPTIMAL OPEN LOOP AND NONLINEAR FEEDBACK
CONTKOL FOR REMOTE ORBITAL CAPTURE
Joseph William Widhalm Jr., Ph.D.
Department of Aeronautical and Astronautical Engineering
University of Illinois at Urbana-Champaign, 1985

Optimal open loop and nonlinear feedback control his-
tories are presented for the problem of detumbling (passivat-
ing) a target satellite by a remotely operated robot
spacecraft. Detumbling is required so that the robot space-
craft, sometimes called a teleoperator or orbital maneuvering
vehicle (OMV), can return the target satellite to low-Earth
orbit for servicing and repair. The dynamics of the coupled
two-body system are described with equations of motion
derived from an Eulerian formulation (the Hooker-Margulies
equations). Two degrees of rotational freedom are allowed
at the joint which connects the OMV and target spacecraft,
and the joint is allowed to translate on the surface of the
OMV. The initial condition of the axially symmetric target
satellite is free spin and precession. Representative
masses and inertias are assumed for each body. The detumbl-
ing controls, which are the external (thruster) and internal
(joint) torques applied by the OMV, are found from optimal
control theory and Liapunov stability theory. Applying
optimal control theory yields a nonsingular two-point-
boundary~value-problem which is solved numerically for the

open loop controls over a specified time interval. Control
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constraints on the thrusters and one of the joint torques
are also considered. Liapunov stability theory is used to
derive a nonlinear feedback control law which results in
the asymptotic stability of a set of equilibria for the
two-body system. This control law is analyzed

numerically and compared to the results of optimum open loop
control.A Also presented is an example in which open loop
controls nearly detumble the target satellite and feedback
controls complete detumbling. 1In all cases the constraint
force and torgue at the joint are determined. Detumbling 1is

shown to be a very benign process requiring only very small

control torques and producing only small constraint loads.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Relevance

The in-orbit servicing and repair of satellites is
a new area of space operations now possible because of the
capabilities of the Space Shuttle. 1In April 1984 a Space
Shuttle crew successfully captured and repaired a satel-
lite, the Solar Maximum spacecraft, for the first
time. A significant part of that effort was the detumbling
or passivating of the satellite which had to be accom-
plished before the repair could begin. The detumbling
proved to be quite difficult even though the angular rates
of the satellite were very small.

Many of the satellites which could benefit from
in-orbit servicing or repair are in orbits beyond the reach
oI the Space Shuttle. To retrieve these satellites to the
Space Shuttle's orbit, a remotely operated spacecraft,
sometimes called a teleoperator or orbital maneuvering
vehicle (OMV), 1s required. The OMV would have to rendezvous
and dock with the target satellite. Then the OMV would
have to detumble or passivate the target, as the Shuttle
did with the Solar Maximum spacecraft, to complete capture.

Detumbling would be accomplished by applying forces and

torques to the target to remove any motion relative to
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the OMV and would be necessary 1f the target were spin- !
stabilized or had experienced a failure of its attitude |
control system., Finally, attitude maneuvers would be per- 3
formed to orient the coupled two-body system for return to *
low-Earth orbit. ]
The detumbling of a target satellite by an OMV is E
the specific problem of concern in this work. The OMV is o,
considered to have rendezvoused and docked with the target
satellite, and detumbling is to be effected by applying
torques on the target through the OMV. The absolute motion 1
of the OMV 1s also to be partially controlled during
detumbling by applying torques on the OMV. In the remainder
of this chapter, previous approaches to the problem of {
remote orbital capture by an OMV are reviewed, and the ;
approaches taken in this work are descri:ed. 3
J
1.2 Previous Approaches R
Work began on the problem of remote orbital capture
in the early 1970's. Efforts to define the concept and
recqulirements of teleoperator spacecraft were made by Onega .ﬁ
and Clingman [1] and by Smith and DeRocher [2]. At the same ]
time the dynamics and control of remote orbital capture ?
began to be considered. Faile, et al. [3] analyzed the .1
responsce of a target spacecraft to torques apnlied by an
OMV which had completed a rendezvous and docking with the
tar:et spacecraft. lowever, they assumed that the OMV was .j
!
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- tnm 2 x[6§u+25>‘xb{2 . (2.15)

]
L#A H Ay AU
By the same argument, motion of the joints on some
other body, u, relative to the mass center of body y can be
allowed. Referring back to equation (2.3), such motion is
treated by using the more complete form of the second

derivative of 5, as in equation (2.13), rather than the

uA !
form given by equation (2.12). Substituting as before leads
to the conclusion that the expression for Ex in eguation

{2.15), as given by equation (2.11), must be changed by

substituting

m(D + 20 x D +u X (o xD )]
A H HA ! u uA

for the term mEu x (o ). With this change, equation

x D
M HA
(2.15) becomes the attitude equation of motion for body i
properly accounting for joint motions relative to any of the

bodies the joints connect.

2.3 Elimination of the Unknown Constraint Torgues

Examining equation (2.15) reveals the explicit
appearance of the constraint torqgues, ng, while the con-
straint forces, F?j’ have been eliminated. Hooker [7] shows

how to eliminate the constraint toraques from equation (2.15)

by considering the attitude motion of the complete system
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The restrict
fixed relative to th
in equations (2.6) a

assumed the vector D

15

1on that the joints on body ) must be

e center of mass of body ) is contained

nd {(2.7) where Hooker and Margulies [6]

., to be fixed in body ) so that

!
Lo

(2.12)

1f, on the otner hand, motion of a joint on body )} with

respect to body ) (e
allowed, D
Ap

(2.12) becomes

s _ lR —
D\p D\u A

where superscript R
to time relative to

Substituting equatio

Further substitution
and then equation (2
directly to the atti
1n which the joints

tive to the center o

given here as

+ 2w, X D

.g. along the surface of body 1) is

is then no longer fixed in body ), so eguation

R x [0. x D. 1, (2.13)

+ xD, + 4 N .

A A u A

indicates differentiation with respect

the reference frame fixed in body A.

n (2.13) into equation (2.6) yields

— - - . 2 _ _— X . —_—
x Dy, Ry Doy Touy XAy T oy
x DY + 25, x DX ] . (2.14)
A A AU

of equation (2.14) into equation (2.3)
.3) 1nto Euler's equation now leads
tude equation of motion for body A

on body » are free to translate rela-

f mass of body ». The final result 1is

. Py A

)
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=2 =2
X = [m DT+ I m DT ] 1
A A A L A U A
- [mADADA+ z my D)\u Au]' (2.7)

Substituting equation (2.6) into equation (2.3) and then
equation (2.3) into Euler's equation leads directly to the
attitude equation of motion of body A under the influence

of gravity gradient torque. That equation given by Hooker

and Margulies [6] is written in an equivalent form by Hooker

{7] as
L6y, - W, =E + o ., (2.8)
LES jed, ]
where Qku is the dyadic,
o . =& +m[b'21~D6]
AN A A A ATA
+ Iom [Biu 1 - quaku] / (2.9)
HFEA
b, WA = -m (D, - D, 1- D,,D.y) (2.10)
and EX is the vector
— _ ..3/\ . A — .=
E, = 3¥Yr Te x Qkk P~ owy X ¢XA Wy (2.11)
=0 =SD |, = _ =,
+ Tx + ‘EJ ij + DX X FA
JESy
_ _ — _ - -3 ~n
5 ' : ; - .
+ u;MD)\U x{}?LJ tmex (v xD1+myP "1 3pp] DM} .
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F+ 3 Fi.=m5 (2.1)
A LE. AT AP :
3-J
A
and
b b + & X0 - g =T + p T
A A A A A A . AJ
jeJA
+ 0z _x FO_, (2.2)
seg. M !

where ;_e)\j is the vector from the center of mass of body A
to the joint, j, on body A. The hinge forces, ng, are

then eliminated from Euler's equation by summing Newton's
equation over the bodies, UM, connected to the body, A, at

each joint, j. An expression for 'F—‘;Ij results, which can be

substituted into the last term of Euler's equation to yield

I &y xF =D x F,. + D, xF
. A
JEJ)\ ] 3 A LFEN Au u
- Im £ xD+m $D_xD_, (2.3)
LFEA b A AU LEA Al HA
where D, =- I m m*' ' (2.4)
’ uFL M Au
and b,, =D, tZ,, - (2.5)

Here ‘fku means the vector from the center of mass of body A
to the joint, j, leading to body u. Ffrom equation (2.3)

it can be shown that

-I m £, xD, =-X -8, -w xX * (2.6)
A A ’
uEL M u H A A

where X, 1is the dyadic defined by Hooker and Margulies (6]

as
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.
the revised n-body equations the two-body equations for :
the capture problem are derived. The equation for the _
constraint torque on the joint given by Hooker [7] also j
o

becomes modified to account for joint motion in the
process of rederiving the system equations. The constraint

force on the joint is found by directly applying Newton's

[ N
[P G SO S P

equation for the translational motion of either the OMV or

the target. The resulting equation for the constraint

|
|

force confirms that the joint motion must be prescribed
and is not directly determined by the constraint force

on the joint. Finally, the methods used to verify the
system attitude equations, the constraint torque equation,
and the constraint force equation are discussed. Various
test cases are used along with the principle of conserva-

tion of angular momentum to compare computer generated re-

sults with known results. The expression for the system

angular momentum is derived becuase of its importance to -

the verifying process. 1

L

®

2.2 Review and Modification of the Hooker and ﬁ

Margulies Equation -

To see how the Hooker and Margulies [6] derivation ;

;

must be changed to account for joint translation, that ‘

1

derivation must be traced carefully. Following their -]
development, Newton's and Euler's equations for body X

in an n-body system are: ®

®

¢

1

:
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CHAPTER 2

EQUATIONS OF MOTION

2.1 Introduction

An Eulerian derivation of the equations of attitude
motion of multi-body satellites has been presented by Hooker
and Margulies [6] and Hooker [7]. These equations are
appropriate for a system of n rigid bodies connected by
joints which allow relative motion between the bodies
through rotations at the joints. Two restrictions are
imposed on the system in this formulation. First, chains
0of connected bodies may not form closed loops. Second,
joint positions must be fixed with respect to the bodies
they connect. Otherwise, the axes of rotation at each joint,
arbitrary external forces and torques, and arbitrary inter-
nal torques at the joints may be specified. Constraint
forces and torques at the joints do not appear in the final
equations of motion, but methods are given to determine
these quantities after the absolute angular and transla-
tional accelerations of each body are known.

Modifying these equations to allow specified joint
translational motion is the subject of this chapter. First,
the Hooker and Margulies derivation [6,7] is reviewed to

show how the form of the equations is affected by assuming

fixed joints, and then the required changes are made. From

- N i .
[ : . .
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A‘;A

e




10

Liapunov stability theory is employed to derive a non-
linear feedback control law to effect capture. Results
are presented for this control law for comparison with
the open loop results of Chapter 3.

Merging the results of Chapters 3 and 4 into con-
clusions and suggestions for further work is the subject
of Chapter 5. After comparing open loop and feedback
results, an example is presented in which open loop con-
trol brings the two-body system very close to the final
spin-stabilized equilibrium; then Liapunov feedback
control completes the capture. From the various approaches
to the capture problem, significant points are highlighted
to show how the general capture problem has been brought
into better perspective. Finally, several suggestions
are offered for continuing this work to refine the OMV
concept and requirements for rendezvous and docking and

to consider target spacecraft with more genera mass

properties and configurations.
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Also of importance as a part of the solution of

the capture problem are the constraint force and torque on
the joint during capture. These quantities determine the
structural requirements of the joint and the force required
to move the joint during capture. Equations to compute
these quantities are a part of the work of Hooker and
Margulies [6] and Hooker [7] but again must be modified to
account for joint translational motion. The necessary
changes to these equations are also developed in Chapter 2
and the aforementioned work by Conway and Widhalm ([9].
With the necessary dynamic equations of the two-
body system, a control strategy or control law to effect
detumbling must be found. Control of multi-body systems
interconnected as proposed here has not been addressed
previously, but optimal control theory and Liapunov
stability theory provide methods for deriving open loop
and nonlinear feedback controls for such nonlinear systems.
In Chapter 3 the capture problem is solved using optimal
control theory. The nonsingular two-point-boundary-
value-problem (TPBVP) resulting from this approach is
solved numerically for the system state and open loop
control histories over the specified time interval for
capture. Cases in which the controls are constrained and
unconstrained are presented to illustrate the effects of

simplifying the control system. These results are also

discussed by Conway and Widhalm [10]. In Chapter 4
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capture problem proposed by Conway, et al. [5] but with
r the additional degree of freedom that the joint 1is

moveable and controllable on the surface of the OMV.

]

To limit the complexity of the capture problem,

the following assumptions are made:

v .

1. Joint motion does not change the mass properties

2. All controls are continuous.

3. The target satellite is passive during capture.

-4
4. Absolute motion of the OMV is controlled by .1
thrusters on the OMV which do not change the mass proper-
ties of the OMV by their operation.
5. Space environmental effects (gravity gradient, ;‘
solar torque, etc.) are ignored.
Solving this capture problem first requires the ‘]
equations of attitude motion of the two-body system to be I1
developed including the effects of joint motion. An N
Eulerian derivation is again desired because the control
- forces and torques appear explicitly. However, the general .1:
E n-body equations given by Hooker and Margulies [6] and
Ev Hooker [7] cannot be applied directly because their
L derivation does not permit connecting joints to translate ;
relative to the bodies they connect. Consequently, their ]
derivation must be modified to account for joint transla- 1
tion, which is the subject of Chapter 2 and a work by .:‘
. Conway and Widhalm ([9]. ]
: .
;
‘
;
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of the OMV. The initial value of i is determined by the
initial values of Yy and ;2 for steady spin and precession
from Greenwood [8].

With the initial state of the system defined, the
final state must be considered. Since the two-body system
is to be returned to low-Earth orbit after capture, the
capture process should terminate with no relative motion
between the target and the OMV. The OMV é3 axis should

also maintain a constant orientation in space with no

further active control. This is possible with the config-

uration proposed by Conway, et al. [5]; but, since the joint

position is fixed on the OMV, there is only one scheme
available, that which completely annihilates the system
angular momentum. The final Yy however, is limited only
by the physical constraints of the system. Unfortunately,
the initial cone angle, Y » may not be accurately known
prior to rendezvous so that the joint may not be preposi-
tioned. Also the joint position at the start of capture
may not permit a suitable target orientation relative to
the OMV for the return to low orbit. 1If, on the other
hand, the joint could move on the surface of the OMV, these
problems would be eliminated. Furthermore, if the joint
were moved during capture to a position on the ;3 axis,
the final two-body configuration could be spin-stabilized.

Therefore, the objective of this work is to solve the
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problem. Consequently, the objective here is to extend
the work of Conway, et al. {5] by solving their capture

problem for detumbling control histories.

1.3 The Present Approach

In extending the work of Conway, et al. [5], the cap-

ture problem they proposed is left unchanged. That is,
the target satellite is to be captured from a state of
steady spin and precession. The problem is particularly

well posed because the docking of the OMV with the target

at the joint on the OMV can be accomplished with no coupling

effects between the two bodies. Consequently, the spin and
precession rates of the target, as well as the spin rate of
the OMV, are unchanged through the docking sequence.

To clarify the dynamic state of the two-body sys-
tem after docking, reference is made to Figure 1 where
the & basis and the n basis are fixed at the centers of
mass of body 0 (OMV) and body 1 (target) respectively.
The initial spin rate, &, of the OMV is equal to the
initial precession rate of the target. The initial
angular momentum vectors of the OMV and the target lie on

the €, axis and have the same sign. The center of mass of

3
the target is initially on the 83 axis. The joint posi-
tion on the surface of the OMV is determined by the

initial cone angle, Yy and the distance in the 53 direc-

tion from the center of mass of the target to the surface
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precession can be considereu. As shown in Figure 1,
the OMV (body 0) they propose is joined to the target
(body 1) through a two degree of freedom ball and socket
joint with a grappling device. An Eulerian derivation of
the equations of motion of the two-body system is developed
from the general n-body equations given by Hooker and Margu-
lies [6] and Hooker [7]. System response to internal
torques at the joint and external thruster torgues on the
OMV is analyzed by integrating the equations of motion
with a set of Euler angle kinematical equations for the
OMV. The output is used to drive a graphics computer
display of the two-body system to show the resulting
motion. Since the OMV is not considered absolutely
stable, as in the previous work, the simple torque schemes
applied do not yield a satisfactory capture method as
evidenced by the propagation of the system orientation
and angular rates. This was expected, and Conway, et al.
[5] conclude that active control of internal and external
torques is required for a satisfactory capture.

The problem of remote orbital capture is thus
seen to have received only limited treatment. As sug-
gested by Conway, et al. [5], a more realistic approach
to the dynamics and control of the OMV-target system is
essential. They clearly illustrated this point through a

very specific capture problem, but they did not solve that
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absolutely stable and ignored the problem of controlling
the response of the OMV in applying torques to the target.
Kaplan and Nadkarni {4] went farther by proposing an OMV
with an articulating arm capable of four degrees of rota-
tional freedom relative to the OMV. A grappling device
on the arm was envisioned that could be driven to null its
motion relative to the target for docking. The dynamic
response of this system to internal torgues was analyzed
under two critical assumptions. First, articulating counter-
masses were available to balance dynamically the mass of
the articulating arm. Second, the mass of the OMV was
large relative to that of the target. While simplifying
the dynamic analysis, these assumptions result in an
extremely massive OMV with a very complex control system
for the articulating arm and counter-masses. With the
hope of simplifying the OMV concept, Conway, et al. [5]
continued this research with a new approach.

Conway, et al. [5] formulate a capture problem in
which a 1000 Kg target spacecraft is to be retrieved
from geosynchronous orbit to low-earth orbit. The OMV
for this mission is assumed to use conventional propulsion
and to be cylindrical in shape for transport in the cargo
bay of the Space Shuttle. The target spacecraft is
assumed to be symmetric about one axis so that the problem

of capturing it from a torque-free steady state of spin and

A e . - L Y Y, S U T Y S T L N T T O .
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of n rigid bodies. First, a reference body is selected

and designated as body 0. The angular velocity of body 0
is GO and has three components in a body 0 fixed frame.
With the n-body system having r degrees of rotational
freedom, the angular motions of the remaining n-1 bodies
are described in terms of 56 and r-3 angular rates relative
to body 0 about the gimbal axes at the joints. By summing
equation (2.15) over all n bodies, three equations free

of ng

obtained by using the fact that the constraint torque at

result. The additional r-3 equations necessary are

a joint is orthogonal to each of the gimbal axes at that
joint. Therefore, equation (2.15) can be summed over all

bodies to one side of a joint, j, to isolate ng at that

joint. Taking the scalar product of this sum with each of
the gimbal axes, @i, of the joint yields equations equal in

number to the degrees of freedom at the joint, all free of

e
ij.

equations free of constraint torques to complete the required

Repeating this for all system joints yields r-3

set of r equations. Hooker {7] shows the result of this
procedure applied to equation (2.8). When applied to

equation (2.15), the result is
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o ~ _ _ 7 e T
40 %01 %02 """ %0,r-3 @o
210 Y]
. - = {2.16)
: Y2
r-3,0 Yr-3
— -t S e
- —_ = =R :R —_ .._
$ E - Im P x[D +2w,xD  ]+% I D, xm[D +2¢w xD
\ A X uE) B Ay A A Au LEA A BA
5, (1 oL g z Z (BR + 25, x D° ]
g, “1I e4,E, € m X w, X
1 \ 1Ix7A N 1A L# A Al A AU
= R =R
+ % ¢ D x m[D + 20 x D13}
) 1Xx LFEA AU A u LA
N —% — =R - -R
g.__ (Z _ E, -2 e__ T mg, xI[D] +2w, xD
r-3 y F 3,0 TA N r-3,X\ L#A AU Au A Al
+
+ i €r-3,2 z DAu x m[DuA 20 X DuA]}
L TED
where
z Z , a dyadic, (2.17)
aOo ; QXU yadic
u
EYe T ki ¢Xu * g, r & vector, (2.18)
Al
a e z . , 2.
a9 9 Zz i1 Qku , a vector (2.19)
Ay
. 3. . S . (2.20
a5 95 i i €4y Eku Qku Iy a scalar ( )
B - E g (2.21)
Ey By - i o T L %k Yk %k .

P W e

L
i @

W)

. A!L

@

A

PP,




b

Py

e T v

o

ANES s iana ) o

19

1, if a_ belongs to a joint anywhere
i
on the chain of bodies connecting
and €, < (2.22)
H body u and the reference body.

0, otherwise (e.g. p = 0).

Equation (2.16) is a second order matrix differential equa-
tion. To propagate system orientation with respect to an
external frame, r additional first order differential
equations are required. Three of these are usually Euler

angle rate eguations, and the remaining r-3 equations are

Yo = vy (2.23)

Joint motions with respect to the bodies they connect must

also be specified in terms of E?u andlifu. Then equation

(2.5) is twice differentiated to compute ﬁiu and B?u reguired

for equation (2.16). The same is required where iﬁx and

qu are considered.

2.4 Two-Body Equations for the Capture Problem

St ecializing equation (2.16) to the two-body system
of the capture problem is straightforward and is presented
in detail here as an example of the Hooker [7] procedure
applied to equation (2.15). Referring back to Figure 1,
the OMV is body 0 and the target satellite is body 1. The
two-degree-~of-freedom joint allows rotations Y about

gimbal axis %l, a unit vector in the él direction, and Yo
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about gimbal axis 62, a unit vector in the ﬁ3 direction.
The angular velocities of the two bodies are written as

Wy = Wgp € + Wg2 e2 + wg3 e, (2.24)
and
wy T wy T Y397 * Y9, - (2.25)
Equation (2.15) for body 0 is
= - ~C
%00 "9 * %01 T @ T Byt T

< “R - _ 2R
my xOl‘ X (DOl + 2w0 x DOl) (2.26)

and for body 1 is

E. +

—c
1T

e
(@]

+
-
H
H

E |
'—J

i

1

- ~R - 2R
+ Dloxm(DOl + 2m0 X Dol). (2.27)

Summing equations (2.26) and (2.27) eliminates the constraint

= =C

torques since TOl = - Tll' so the result is

(9 40 ) Twy (g *Oyy) Twy T

00 10
—_— — —_ R _ ;R
Ey + Ep - m¥y; x(Dyy + 2wy X Dyy)
— :R — ;R

+ Dl0 X m(DOl + 2m0 X DOl). (2,28)

Equation (2.25) must be differentiated with respect to

!
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.
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| | | | i
time and substituted into equation (2.28), so
WP T W T Y1 91T Yy 51 Yy 9t vy 9y - (2.29) |

Substituting into equation (2.28) yields

- ~

(090 * %01 * 010t 01107 wg * (9 T o11) (=¥ 19) *¥,9,)
By *+ By = (6 * 011) (= vy 95+ v,3,)

— gR —
- ml;Cle (DOl+ 2w0 x D..)

x m(DY, + 2. x DR.) . (2.30)

+D 01 0 01

10

Applying equations (2.17), {(2.18), (2.21), and (2.22) to

equation (2.30) yields

30 T %00 * %01 * %10 *e11 v 3 X3 (2.31)
agy = (¢Ol + ¢ll) T 9 , 3 x 1, (2.32)
ay, = (¢Ol + ¢ll) * g9, ; 3 x 1, (2.33)
—% — . ’: « 2
Ey = Ej = ¢51 ° (-qul * Y,9,) (2.34)
—* - * 2 . s

and E, = E; - by (—ylgl +Y,9,) - (2.35)

At this point equation (2.30) with eguations (2.31) through
{2.35) gives three of the five equations required to
describe the motion of the two-body system. The other

two equations are obtained from equation (2.27) by using
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the fact that Tgl is orthogonal to both @l and @2. Taking

the scalar product of §l and @2 with equation (2.27) after

Lo ot ol il S e o o

yields

F substituting for Jl

. FTY.  FUNI AT | ] VA

.
~ - A~ « A

IR RS PR S S SRR P EI R PP L

* =R — =R

T Y Ty W e
N

- El - D10 X m(DOl + 2@0 X DOl)] =0 (2.36)
and
J
L 5, - " =y o
» 9 lloyg + 9yy) " wg + 0yt (Y9 * vp9))
E. * R “R ;
L - El = Dy % m(DOl + Zwo x DOl)] =0 (2.37) 1
l B
: Applying equations (2.19), (2.20), and (2.22) yields the :
b
i‘ following terms which appear in equations (2.36) and (2.37): .
% 30 = 91 ° (b * o) o 1x 3, (2.38)
:
b 3,09y + (010 * i) » 1 X3, (2.39) #
R
)
r = q. - -9 ]
‘»
g ~ ~
’ alz = gl : ¢ll ° 92 ’ (2.41)
g v
' a1 T 9 %1 9y (2.42) :
and ayy =9y ¢ 9y 9y - (2.43) ]
! )
All that remains is to rewrite equations (2.30), (2.36) and 1
{2.37) in matrix form, which finally gives
! L
]
A {
g ]
4
! J
)
fr 1
LM*LM‘;.,%M%.@LAMM;AMA o _u-hh ,L_'A.'_ . . a ,j_';LA;,A_l
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“o1
O Er+E -m, & BR 427 xbR
200 %01 %02 (%02 otEL ™My £Lyg ¥ (Dyy*+2wyxDyy)
* _ _— ‘_'.R —_ LR
m03 = + Dlo X m (D01+2w0xD01) (2.44)
_ . A —% _ ’.'_R _ =R
219 311 212 |71 9y [Ej#Dygx m (D) +2wyxDy, ) ]
—_ .. aL —* __ ~R - 2R
| %20 221 %22 | V2| [F27[Ey*Dygx m (Doyt2ugxDgy) ]|,

the matrix differential equation for the motion of the two-
body system in the capture problem with the joint moveable
on body 0.

As previously mentioned, the above derivation
yields a method to determine the constraint torque on the

joint. Equation (2.27) can be rewritten as

7C .

T, = wh * ¢,, * @, - E

%10 ° Yo 11 1 1

— =R _ R
- Djy X m(DOl + 2wy X Dpp) - (2.45)

All quantities on the right hand side of equation (2.45)

are known by way of the integration of equation (2.44) and
the five kinematical equations. Therefore, the constraint
torque can be calculated directly from eguation (2.45) in
the process of propagating the system motion through numeri-

cal integration as Hooker (7] has shown.

2.5 Joint Constraint Force Equation
The constraint force on the joint in the capture
problem is calculated by a method similar to that for the

constraint torque in that Newton's equation for body 0 or

o, .
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body 1 is used in conjunction with eguation (2.44) and

the kinematic equations. Rewriting Newton's equation in
terms of the variables in the capture problem is helpful
however. Since gravitational effects are to be ignored,

equation (2.1) can be written for body 0 as

—H an
= m,r

FO + FOl o¥o (2.46)

where EO is the vector from the system center of mass to
the center of mass of body 0. From the definition of the

center of mass given by Greenwood [8],

£ . (2.47)

r. =

0 &g = Loy =

Then

+ w X (0. X 38) , (2.48)

where 2 is written in and differentiated in the e basis.

Substituting back into equation (2.46) yields

m.m . .
=H _ =, 01 ,5R — =R, = =
Foo =~ Fo v g &+ 2up X & tag x 2
+ 50 x(cfo x #) , (2.49)
which can be solved for Egl since all required quantities

are available from equation (2.44) and the kinematic

equations.
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H
01’

the direction of joint motion is the force required to

The component of the constraint force, F in

move the joint. However, equation (2.49) confirms that
the joint motion, contained in 3 and its time derivatives,

is not simply forced by [

.n @t

0, and ?6. The joint acceleration

is also a function of the time derivatives of the angular

rates. Furthermore, from equation (2.44) the time deriva-

.‘,i.u L

tives of the angular rates are functions of the joint

acceleration. Consequently, the joint motion must be

specified to propagate the system attitude motion.

on_

2.6 Eguation Verification

The equations derived in the previous two sections
were checked against the known results of various test
cases. Equation (2.44), the two-body system attitude equa- D
tion, was verified first by two cases in which the right .
hand side was known to be zero: first, the post-docking

configuration of the capture problem with no control forces

or torques acting and the joint position fixed and second,

A

the final spin-stabilized configuration after capture with
no control forces or torques and the joint position fixed
on the é3 axis. In these same two cases the constraint
torque and force on the joint were also known to be zero,
so equation (2.45) for the constraint torque and equation

(2.49) for the constraint force could also be verified.

. A.. e A 2 & m'a ;A. Lot ot ;o amta

Equation (2.44) was further verified by numerical integra-

tion from several initial conditions and with either no
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control forces and torques acting or with only internal
control torgues acting. In all of these cases system
angular momentum about the system center of mass must be
conserved, which was observed in the computer results.

The angular momentum calculated above had to
account for joint motion specified in each case. The
expression used for that calculation is derived here from
first principles. Designating ﬁcm as the system angular
momentum about the system center of mass and writing both
inertia dyadics and all vectors in the e basis, the defini-

tion of system angular momentum from Greenwood [8] is app ied,

giving
Hcm = ¢0m0 + bjwy ry X myry + r; x myr,. (2.50)
EO was previously defined by equation (2.47) as the vector
1 from the system center of mass to the center of mass of
body 0. ;l is similarly defined for body 1 as
m m
T, =-2 (¢ -ZF )=-23% (2.51)
1 m 10 01 m ) )

Substituting equations (2.47) and (2.51) into equation (2.50)

and combining terms gives

mom, . =

Since all vectors are written in the e basis, 210 and 201
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must be computed as

Z <R 3 .
Z’Au zz/\u + wo XZ . (4.53)

Au

‘fgl 1s not zero when the joint is moving relative to body 0.

jﬁo is independent of joint motion but does depend on vy, .

2.7 Conclusion

By tracing the derivation of the equations of motion
of a multi-body satellite given by Hooker and Margulies [6]
and Hooker [7], the effects of their assumptions were
found that restricted the application of their equations
to configurations in which joints were fixed in position
relative to the bodies they connect. The changes to their
equations that account for joint motion were shown in
equations (2.15) and (2.16). From these new equations was
derived equation (2.44), which describes the attitude motion
of the two-body system of Figure 1 with the joint moveable
on the surface of the OMV (body 0). A method for computing
the constraint torque and force on the joint from equations
(2.44), (2.45), and (2.49) was also indicated. These
results were checked by comparison with known motions

from simple initial conditions.
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CHAPTER 3
CAPTURE BY CONTINUOUS OPEN
LOOP OPTIMAL CONTROL

3.1 Introduction

In this chapter the methods of classical optimal
control theory are used to derive control histories
that detumble the target satellite. The optimal control
problem is nonlinear and cannot be solved in closed form,
so a numerical method is employed. The problem is struc-
tured to be compatible with the numerical method by con-
sidering only those cases in which the final absolute
orientation of the OMV is unspecified. Results are obtained
for a case in which the controls are free and for cases in
which control constraints are applied. The results are com-
pared and discussed to show that capture is possible with
very reasonable control profiles and that the constraint
loads on the joint cause no undue structural requirements
or undue control requirements to move the joint during
capture. Furthermore, the solutions are seen not to be
diminished by leaving the final absolute orientation of the

OMV unspecified.

3.2 The Optimal Control Problem
The capture problem, as an open loop optimal con-

trol problem, is to drive the OMV-target system from the

I I R O T U T

b




29

alven 1nitial state to the vprescribed final state in a
specilflied time interval while minimizing the integral per-

formance 1naex,

u, ] dt . (3.1)

The ui's represent the system controls, which must be
defined. Since there are five rotational degrees of free-
dom 1n thke two-body system, rive controls are selected, an
external thruster torque applied about each axis of the OMV
and an internal torque applied about each of the two gimbal

axes at the joint. No control variable is associated with

joint translation because the velocity and acceleration pro-

files are precomputed to satisfy the desired final joint
position.

Using fundamental optimal control theory, Bryson
and Ho [11l], the system dynamic and kinematic equations are
adjoined as constraints to the integral performance index
with Lagrange multipliers or costate variables. After

defining the system Hamiltonian, the optimality conditions,

by way of the Pontryvagin principle, are applied, which trans-

form the original minimization problem to an equivalent
two-point-boundary-value-problem (TPBVP) in the state and
costate variables. For the most general case of this
capture problem there are 20 independent differential
equations defining the TPBVP in terms of 10 each independ-

ent states and costates.

. .®
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The capture problem here can be suitably cast for
an algorithm recently developed by Pereyra [12]), which
solves the TPBVP directly. The Pontryagin principle can
then be applied to the solution to solve for the five con-
trol histories. Therefore, the TPRVP is derived next to

provide the inputs required by the algorithm.

3.3 The Two-Point-Boundary-Value-~Problem (TPBVP)
To follow the procedure given above for deriving

the TPBVP, a more compact form of equation (2.44) describ-

1ng the system dynamics is desired. First, the 5 x 5 matrix

on the left hand side of equation (2.44) is defined as the

matrix A. Next, the five element vector on the right hand
—

side of equation (2.44) is defined as F . Finally, by

letting

- -

(551 992 993 =Yy y2] = [%, %X, %X, -%, %.] = x (3.2)

1 72 73 4 75

equation (2.44) can be written as
AX = F (3.3)

However, reference to equations (2.11), (2.21), and (2.44),
with the fact that the gimbal axes at the joint are ortho-
gonal, shows that f* can be decomposed into a sum of two
vectors, the control vector u and a vector F consisting of
the remaininyg terms in 5*. Therefore, eqguation (3.3) 1is

wrltten as

q
b
1
I
{
i
4
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all but one of the elements were derived, and these were
verified at a selected point in the state and costate
space by using a numerical differentiation technique.
Agreement to at least eight significant ficures was always
achieved. The complexity of the last partial derivative,
3{6/511, and the accuracy achieved above led to using the
numerical method for this one derivative to complete the
Jacobian.

Turning now to the results of the three selected
cases, Figures 2 through 7 summarize Case 1 in which all
five controls are unconstrained. 1In referring to these
figures and the others that follow note that

[UOL wo2 Yp3 Yy Yp Yy Uy U, Uy uy uS] =

(Wl W2 W3 G1D G2D G1 T1 T2 T3 TGl TG2] .

The Case 1 solution was achieved with a grid of 87 points.
The minimum value of the performance index was computed

to be 2.335. Figure 2, showing the histories of the compo-
nents of the OMV angular velocity, indicates that the OMV
angular velocity vector remains very nearly aligned with
the body fixed é3 axis during capture. Therefore, the OMV
remains virtually in a state of pure spin about the é3 axis

during canture, which confirms that specifying the final

orientation of the OMV 15 not necessary. Consequently,

®*, .. ..

-
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Of the two approaches offered by the algorithm to
solve the TPBVP's, the manual method of solving a sequence
of problems, varying the initial state of the system, was
selected for i1ts ease of programming. For the case of
unconstrained controls, the sequence of initial conditions
used is shown in Table 4, all of which represent free spin
and precession of the target and pure spin of the OMV about
the é3 axis. The solution grid for each problem was used
as the initial estimate of the solution for the next prob-
lem. For the cases of constrained controls, the free

control solution for the initial conditions of Table 3 was

used as the initial solution estimate. To verify the com-

puter code, a simple linear problem was solved first and

checked against the analytical solution.

TABLE 4

Sequence of Initial Conditions

Y1 Y2 ©03
0.017 rad -0.002 rad/sec -0.019 rad/sec
0.087 rad -0.004 rad/sec -0.048 rad/sec
0.087 rad -0.009 rad/sec -0.096 rad/sec
0.175 rad -0.009 rad/sec -0.097 rad/sec
0.349 rad -0.009 rad/sec -0.102 rad/sec

(200) (-0.59/sec) (-5.89/sec)
Since the Jacobian matrix is critical to the algo-
rithm, some discussion of its derivation, coding, and

verification is important.

Jacobian is a 12 x 12 matrix.

For the capture problem the

Analytical expressions for

L9,

es®
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TABLE 2
System Mass Properties
Mass ! 2 3
2 2 2
Target 1000 kg 1000 kg-m 1000 kg-m 1100 kg-m
Spacecraft
2 2 2
oMV 4500 kg 6400 kg-m 6400 kg-m 11800 kg-m
TABLE 3
Initial Conditions
»Ol = 0.0
w02 = 0.0
W3 T -0.102 rad/sec
‘(l = 0.0
{2 = -0.009 rad/sec
no- 0.349 rad
IOl el = 0.0 me-zers
jEOI-éz = -0.599 meters Joint Position
fOl.éB = 0.62 meters
R ~ A . .
IOl = (0.002 meters/sec)e2 Joint Velocity
<fgl = 0.0 meters/sec2 Joint Acceleration

~

IlO = (1.75 meters) Ny

— Y ASRaih ZSun Shain Bhett -y o Ah anet ge J
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(3.28) and the control constraint is

u4-lel_k2Yl=0 . (3.30)
Changes to two of the costate equations follow directly,
and U and the other four controls are found again from
equation (3.14) written as

[u, u, u, u, u.l + Fc A"l 4+ (000 O] = 0. (3.31)

1 72 "3 74 75 175 : :

The Jacobian matrix is further changed from the previous case

- .

since A4 and A6 are functions of py, and Y1 and Y, appear
explicitly in the control driving the state equations of

the reduced twelfth order system.

3.7 Results

Applying the algorithm described in section 3.5 to
the TPBVP's for the case of unconstrained controls and the
two cases of constrained controls produces the results
presented here for a two-body system with the mass proper-
ties and initial conditions of Tables 2 and 3. The final
time 1s chosen to be 300 seconds, and the joint transla-
tional velocity 1s chosen as the constant required to move
the joint from its initial position to the é3 axis in that
time. Solution accuracy is controlled by setting the
relative error tolerance used by the algorithm to the

jesirred level, 1.0 x 10-6 for all cases.

IR
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control constraints are adjoined to the performance index,
equation (3.12), with Lagrange multipliers. The resulting

Hamiltonian 1s

A—lf + A_l'ﬁ
o1 =T =T
H = > u + A x4
Xg
_T —_ — —_ —_
e TN EL » TTE, - By (3.28)

where . is a three element vector of Lagrange multipliers
and C is a three element vector of the constant thruster
torques. The same necessary conditions apply; they are
eguations (3.14), (3.16), and (3.17). The TPBVP reduces

to a system of 12 differential equations as before with the
same costate differential equations. The state eguations

are driven by a different control vector from equation (3.14)

given by
—T -1
[Cl C2 C3 U4 USJ + 15 &
L =
+ [ul Mo b 0 0] o, (3.29)
which also determines ... The Jacobian maxtrix is changed
only in the quadrant, ]libf}lf6’ since the costate equations

are unchanged and the control constraints are not functions
of the states.
For the case 1n which uyo1s revresented as a tor-

sional spring and damper, . becomes a4 scalar in equition

e

PR, AAA.

'A ._'_A__J.A._‘A.J_A_‘. - . .

o, . . L J
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La

The results of a successful run of the algorithm
are in the form of a grid. The differential equations

are discretized and solved at program selected points

™

between to and tf, so the solution grid contains -he con-

verged values of the states and costates at those same \

—

points. The control histories can then be computed usin.g
equation (3.15). Equations (2.45) and (2.49) also can be %
applied over the grid to solve for the histories of the

constraint torque and constraint force on the joint.

|
3.6 Capture With Control Constraints ﬁ
To this point a method has been developed to find
' unconstrained, continuous, optimal, open loop controls that »
solve the capture problem. Implementing these controls is J
another matter, so the advantages of simplifying the con-
| trol system by way of control constraints need to be d
considered against the resulting increase in the cost of ‘3
capture. One realistic control constraint is to require ‘
the thruster torques about the axes of the e basis to be 1
constants during the capture. A second constraint might %
be to require the torgue about gimbal axis 1 to be propor-
tional to the angle, Yy and the angular rate, ;l' repre- j
senting a torsional spring and damper. !
The method of adjoining these control constraints )
to the optimal control problem is described by Bryson and i
®

Ho [11]). In the case of constant thruster torques, the
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_ —
31§'6 aliG
31X 312
J = (3.27)
ali6 aliG
3 3% 91 1

Computer storage requirements are manageable for a twelfth
order system, and single precision computations are adequate
since a relative error tolerance is used in the convergence
test.

The algorithm offers two approaches to solving non-
linear problems. One approach is to attack the nonlinear
problem directly. The other is a continuation method by
which the boundary conditions and nonlinear terms in the
differential equations are multiplied by a factor of ¢.

The algorithm advances ¢ from zero to one and solves a se-
gquence of problems using the previous solution as the initial
solution estimate for the new problem. With ¢ = 0 the prob=-
lem should be simple, linear if possible. With ¢ = 1 the
original problem should be recovered. If only the boundary
conditions are parameterized, the continuation method is
simply an automated version of the first method, which

can be applied to a sequence of problems, each with

different boundary conditions from the previous problem,
using the previous solution as the initial estimate for

the new problem.
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TABLE 1 -
]
State Boundary Conditions .3
"
t to tf P
i °
. Wy 0.0 0.0 1
Wg2 0.0 0.0 b
3 w specified free i
{ 03 .
4 N
: Y1 0.0 0.0 ]
7, specified 0.0 :
Yy specified 0.0 ,
¢
Allowing ¥03 to be free at te requires that A3(tf) be

zero, giving the twelfth boundary condition required to d
solve the TPBVP. 2
)
B
3.5 Solving the Reduced Order TPBVP }
Having reduced the TPBVP to a nonlinear system of ;
12 independent differential equations, solution can be 1
attempted by a discretization method. The algorithm to be )
employed is based on that developed by Pereyra [1l2]. Finite _J
o

difference methods convert the differential eguations into

a higher order nonlinear system of algebraic-transcendental
equations to be solved simultaneously using a Newton itera- ]
o

tion. As inputs the algorithm requires the system of
differential equaticns forming the TPBVP, the boundary
conditions, and the nonsingular Jacobian matrix of equa-

tion (3.27), which is used in the Newton iteration.
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the Hamiltonian, equations (3.12) and (3.13). Conseguently,
the equations for i also become independent of v, 8, and Q.

Leaving the final value of X (Yz) unspecified yields
a similar result. The symmetry of the target makes the

Hamiltonian independent of x., which gives

7

A, = 0 (3.22)

and

Constant . (3.23)

>
1

But X7(tf) is zero since x7(tf) is free; therefore, A7(t)
1s zero.

The TPBVP is now reduced to a system of 12 inde-
pendent differential equations in six state and six costate

variables, which is summarized as follows:

x=a"1F + a7lg (3.24)
x6 = X, , (3.25)
and
A"l + a”lg
= T
1)‘6 = - l)‘6 (3.26)
X4 1%6

where equation (3.15) is used to substitute for u after the
indicated partial differentiation is performed. The state
boundary conditions to be considered are summarized in Table

1.
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further complicating factors. The special numerical
treatment required of these two equations outlined by Jun-

kins and Turner ([13] means that this capture problem is

not well posed for conventional numerical methods for
solving TPBVP's. 1In particular, the constant in equation

(3.21) is unknown. Furthermore, the two dependent equations

Mae & 2nls B Bah el 4

in the system of 22 equations of the TPBVP cause the Jacob-
! ian matrix of the system to be singular. But a nonsingular
Jacobian is required for the Newton iteration used by

[ advanced shooting methods and discretization methods for

L. e

solving TPBVP's. Therefore, a simplification is sought to

reduce the dimension of the problem and eliminate the

two dependent equations from the TPBVP.

3.4 The Reduced Order TPBVP

The general TPBVP can be reduced to a system of 12 .

L SO

independent differential equations by selecting the boundary

conditions at the final time so that the equations for B

i a.a a.a_a

and v, as well as those for x., and its associated costate,

7

A can be ignored. Noting that the equations for X are

7’
independent of 3 suggests leaving B unspecified at tes

equivalent to leaving the final orientation of the OMV )
unspecified. Doing so effectively ignores the kinematics
of the OMV, so the associated equations and the vector v

can be removed from the augmented performance index and
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TPBVP. Junkins and Turner ({13] point out, though, that
equations (3.8) and (3.20) are equivalent and write
S
z v; = Constant. (3.21)
i=1

Therefore, as with B, only three of the equations for v
are independent, so there are in fact only 20 independent
equations in the TPBVP.

Twenty boundary conditions are required to solve
the TPBVP with two others determined from equations (3.11)
and (3.21). The 11 state variables are generally specified
at the initial time, to' and some or all of them specified

at the final time, t For those state variables unspeci-

£-
fied at tg, their associated costate variables must be zero
at tg, except for v which must satisfy equation (3.21) as
shown by Vadali, et al. [l4], since the performance

index is not a function of the final state.

Solving this TPBVP numerically is a very formidable
task. While Junkins and Turner [13] have treated the opti-
mal control of a rigid body with 12 independent equations
forming the TPBVP, moving forward to treat systems of
rigid bodies is not a trivial step. Even with a twc-body
system, the state equations are much more complex, and the
costate equations become equally so. The dimensionality

increase has obvious impacts on computer storage require-

ments, and the two dependent equations in the TPBVP are

®L.

... ..

e e (O @

_4_'.-_4, aa . . L‘A,‘A
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Ta~Ll (3.15)

_T _
u [
meaning that the control vector, u, is a function of the

matrix, A, and the first five elements of the vector, ).

Further conditions require that

O . . K . . . _
A - L')tll /&21 \3! )\4/ ASI A6r >\7] - HX (3016)
and
IV TR (3.17)
R
Therefore,
A7IF 4 atlg
. _7 _
A= -3 X, -3 Bl ¢z, (3.18)
177
XS _
1%7
and
VT = - 3T g, (3.19)
or
V=0V (3.20)

since 2 is skew symmetric. Substitutin- “»r u from equa-
tion (3.15) in the state equations (3.5), (3.6), (3.7), and
(3.8) and in the costate equations (3.18) and (3.20) gives
the nonlinear system of 22 ordinary, first-order, differen-

tial equations in the states and costates that form the

TR e PO T -« . - e

N i

MMLA‘_A.J__’A_.‘!LA A 4 e =

a®




AT e

— Y v

R

Aada TN T —— - M /AN Gu R A e —~ e mbie 8 0 e men Mt 40 et A M 20 fuan e A S 0 ae age i Son

32

However, as Junkins and Turner [13] point out, only three
of the Euler parameter equations are independent since g

1s constrened by the equation

=1 . (3.11)

The TPBVP can now be derived by first writing the

augmented performance index,

ATlF + a7y - ET
t
LS R
P.I. = [ {=zuu+ A X, - X
. 2 4 6
(@]
| ¥s T %7 _
-7 — = ;
+ v [ e - gl} dt , (3.12)

where X and v are seven and four element (costate) vectors
respectively. Next, the Hamiltonian, H, is extracted from

equation (3.12) and is written as

a"lF + a™lg
H=12 30+ 00| % +35T B . (3.13)
s
Applyihg the Pontryagin principle,
H =10, (3.14)

gives the optimal control as

s T s B e I i B o It k. e R 8. B e B B o e m B e a o a T e e

RO , A
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aal el 2 e wfafa
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AX = F + 0 (3.4)

or equivalently as
x=2a"1F + a"lg , (3.5)

where the existence of A-l is guaranteed in this case.

A set of kinematic equations to determine the
orientation of the two-body system relative to the fixed
1, 5, ; reference frame in Figure 1 is also required. The
orientation of the target with respect to the OMV is given
by integrating

Yl=X6:x4 (3-6)

and

Yo T x5 (3.7)

The Euler parameters are used to determine the orientation
of the OMV. 1In the notation of Junkins and Turner [13],

the Euler parameter variational equations are

E=0F8, (3.8)

where

and

e}
il
N

X
L 3 2 (3.10)
X X
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reducing the TPBVP from a system of 20 differential equa- .
tions to 12 is clearly justified. The very nearly con- ;
stant behavior of wg 3 in Figure 2 is the result of scaling. j
>

Small fluctuations in wy3 can be seen in the actual output,

and at 300 seconds Wo3 is -0.101 rad/sec. Figure 3 shows

the smooth behavior of y; and 72 in decreasing from their

i f_tata a

initial values to zero at 300 seconds. Figure 4 shows that

-
N, J

?l remains very small during capture and, along with
Figure 2, suggests that optimal capture should be a quite
benign process. Figures 5 and 6, showing the external

and internal control torques, are encouraging in that the

—
a2 19,

magnitudes of all controls appear not to impose excessive

requirements on the control system or to require much 4
longer time intervals for capture. 1In Figure 7 FC is the
magnitude of the joint constraint force on the OMV, and J
TC is the dot product of the joint constraint torque on %
the OMV with the constraint axis, which forms a dextral set :
with 61 and %2. Figure 7 indicates that the constraint ;
loads at the joint should not require a prohibitively %
massive or stiff structure to link the OMV and target. 3
Also in Figure 7 the component of FC in the 82 direction, 3
F2, is the force required to maintain the constant joint i
velocity during capture and also appears to pose no
excessive control requirement.

Case 2 considers the external torques on the OMV, J

Tl, T2, and T3, to be constant during capture. Their
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assigned values are Tl = 0.0, T2 = -0.07, and T3 = 0.011
Newton-meters. The final grid size remained at 87, and
the performance index was computed to be 3.066. Figures 8
through 12 summarize Case 2. Except for the external
torques, comparing the figures of Case 2 with the corres-

ponding figures of Case 1 shows little difference in the

histories of the states, controls, and constraint loads.
The increase in the performance index is the most immediate

guantitative difference between the two cases, while the

T

Case 2 figures show only small changes in the last third
of the capture. Of significance is the fact that capture

is possible with one component of the external torgue set

a9,

to zero, which raises the question of what minimum control -

.‘g -

configuration is required from controllability considerations.
In Case 3 the internal torque, TGl, is assumed to

be produced by a torsional spring and damper. The torque 'ﬁ

constraint is chosen as TGl = u, = 0.57 Yy + 100.0 ?l.

The final grid size was again 87, and the performance

K

index was 4.108. Case 3 is summarized in Figures 13 through

18. From Figures 14 and 18 the behaviors of Yo 72, and the

constraint loads are seen to be only slightly changed from

® .. ..
aaa e 2 3

Case 1. The other Case 3 figures, however, show more A
significant changes in the motion and torque histories.

In particular, as TGl goes to zero at 300 seconds, the

PR S W I WY

magnitudes of Tl and T2 increase significantly to achieve L
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X = [000kx 01" -BX (4.14) ‘

X6 = X4 J

y =Dy ]

Ly |
Then with 833 0, k3 = 0, so X4 remains constant at its ]
initial value. Furthermore, if capture is initiated with
X, = 0 anq X, = 0 as in Table 1, then Xy and X5 remain i
zero throughout capture, and the OMV is always in a state
of constant spin about the é3 axis.

Implementing the control law given by equation (4.13) ®
requires k4 and the remaining four diagonal elements of ]
B to be specified. To keep control forces small, large
displacements of the target center of mass from the %3 ‘
axis must be avoided. Specifying the three constants of ,:
the matrix, D, in the system, (4.14), in conjunction with
k, and 844 can establish joint motion that closely follows °
the decay of X¢ to control the position of the target ]
center of mass. ' :
4.4 Results «i

To compute state, feedback control, and constraint
load histories, the system, (4.14), was integrated forward ;
for 300 seconds from the initial conditions of Table 3 for ﬂ
l§6 and vy,. vy, and y, were initialized to zero. The re- ]
maining system constants were selected as follows:

.
.
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Then substituting from the system, (4.4), yields

S _ =T,,-1= -1- =T
V=x[A"F+A "u] + k4x6x4 + y' D

TR 7

+ YTRDY . (4.11)

However, if D is already specified as negative definite,

the familiar Liapunov egquation can be written,

DTR + RD = -Q , (4.12)

where Q 1s a positive definite matrix. To make V at least

negative semidefinite, choose

T

u=-F +A[0 00 kgxe 017 - ABX . (4.13)

6

If the matrix, B, is positive definite, G is negative semi-
definite in X Furthermore, if B is diagonal and B33 is
zero, G is negative semidei'inite in X3 and Xg- Then from
the above lemma the system, (4.4), with the control, u, of
equation (4.13) is asymptotically stable with respect to
the largest invariant set contained in the X3, X¢ plane.
However, any ronzero Xe results in a nonzero u, and, con-
sequently, a nonzero k4. Therefore, the largest invariant
set contained in the X3, Xg plane is the X axis, which
represents the spin-stabilized equilibrium if W3 does
not go to zero.

Substituting for u in the system, (4.4), results

in a linear system written as

®, . . ... ..9,

I i.A. i

R
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fq = {1x6, Y’V(lxe’ y) < d}

is bounded. Suppose that V is bounded below over the set

A y v v < v 3
23 and that V(lx6,y) < 0 for all 1%¢ and y 1n Q4- Let S
denote the subset of Q4 defined by

S = {lx6,y e Qg ¢ V(lx6’y) = 0} ,

and let M be the largest invariant set of the system, (4.4),

contained in S. Then, whenever

the solution of the system, (4.4), approaches M as t + «.
Note that V(l§6, y) is not required to be positive definite
and that any solution trajectory of the system, (4.4), con-
stitutes an invariant set.

Using this lemma a nonlinear feedback control law
can be derived for the two-body system of the capture

problem. Take as a candidate Liapunov function

T IX+ 2k, x2+ 7 RY (4.8)

<
It
[ N

with X = [X, X, X. =X x5] , (4.9)

where I is the identity matrix, k4 is a positive constant,
and R is a positive definite constant matrix. Differentiat-

ing this positive definite V with respect to time gives

V=xl1x+ kgXeke + §T Ry + §T Ry . (4.10)

. XL';_L..L‘;‘ ‘Ak_‘x,L._._‘_J
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4.3 Global Asymptotic Stability by Nonlinear Feedback
Control

For continuous nonlinear autonomous systems such
as that described by the system of equations, (4.4), the
Liapunov direct method for establishing the global asympto-
tic stability of an equilibrium point is stated from
Theorem 6.7.2 of Meirovitch [16] as follows:

"If there exists for the system, (4.4), a positive
(negative) definite function V(l§6,§) whose total time
derivative &(1§6,§) is negative (positive) definite along
every trajectory of (4.4), then the trivial solution is
asymptotically stable."

The trivial solution is, of course, the equilibrium
point, and the control vector, u, is now considered to be
a vector function of l§6 and y. However, applying the
above theorem to the equilibrium point of the capture prob-
lem can lead to situations in which Q(l§6,§) is only semi-
definite, so a weaker sufficient condition is required.

An extension of the Liapunov direct method through

LaSalle's Theorem for autonomous and periodic systems is

developed by Vidyasagar [15]. One of the steps to LaSalle's

Theorem is given as lemma 81, which provides the required

stability condition for the capture problem. Stated here

for the autonomous system, (4.4), lemma 81 is as follows:
"Let V(l§6,§) be continuously differentiable, and

suppose that for some d > 0, the set

o

t
Y.

t ,
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.
9x1 9x9 9x1 9x5 5x1 #
- T a7 ] :
x AFIE T E x " hE T i
. 1%6 Y :
X 000100 0 0 0 ||x 00000 »
6 6 ®
yy | =]000000 0 1 0 fly, | +/00000 (4.7) .
Y, 0000O0O0O O 0 1 Y, 00000 ~g
y 000000 -ky -k, -k, ||y 00000 , X
B %_ 8 3 2 L |73 ] | _ .
:
where superscript E implies that the indicated quantities i
1
are evaluated at equilibrium after any indicated partial !
{
differentiation. The system, (4.7), is suitably formulated L

as a linear control problem. Controllability is assured

because a control is provided for each of the five degrees

of freedom in the system. Therefore, a control vector, u, o

as a linear function of the nine states can be found to make
the equilibrium point asymptotically stable.

The details of deriving a particular linear feed-
back control, u, and quantifying it are not carried out
here because of the local nature of the stability that
results. Establishing global asymptotic stability requires
Liapunov's direct method applied to the nonlinear system

with the linear control law. The difficulty here is that

with the selected coordinate system a clear path to con-

O

clusive analytic results is not apparent. Howr-rer, the

Liapunov direct method leads to global asymptotic stability

Py

if nonlinear feedback control is considered.

- . > =~ - L 1 hy B T S T v _
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iOl ) e2 = Y2 ’ (4.2)
R .2
and Zo1 €y = Y3 (4.3)

an autonomous system results by writing

x=a1F +alg

*6 = %,

3}1 0 1 0 Y1

Y= 0 0 1 vy, =Dy (4.4)
Y3 k3 otk Ry Y3

The matrix, A, is now a function of Yy and the vector,
F, is a function of the vector, y. The equilibrium point

of interest 1is

[xl X, X3 X, Xg x6] = [0 0CO0O0 0] (4.5)

and [yl Y, Y3] = [0 00] , (4.6)

where C is some constant. A simple translation in X4 brings

the equilibrium point to the origin.

The system of equations, (4.4), can be linearized

about the desired equilibrium giving

N SRRy, S

. .@

.
it
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4.2 Linear Feedback Control About an Equilibrium Point

The Liapunov indirect method as described by
Vidyasagar [15] is often used to design a linear feedback
control law such that an equilibrium point of a nonlinear
system is locally asymptotically stable. The system equa-
tions are linearized about the equilibrium point to set up
a linear control problem. If controllability conditions
are met, linear feedback can be found by various methods such
that the equilibrium point for the linearized system is
asymptotically stable. Then, invoking the results of the
Liapunov indirect method, the same linear feedback can
be applied to the nonlinear system assuring the asymptotic
stability of the equilibrium point in some neighborhood
of that point.

Looking now at the capture problem, the system
equations (3.5) and (3.6) are nonautonomous because the
matrix, A, and the vector, F, are functions of the joint
motion, which is a prescribed function of time. However,
since the equilibrium point of interest is the spin-
stabilized state with the joint at rest on the 83 axis
in Figure 1, the joint motion can be prescribed in terms
of three additional states to form an autonomous system

when adjoined to equations (3.5) and (3.6). Letting

A, SR RPN, . S I, T . NSRS, X

ey . JUSN




Dol oA Sl S et M e Ahat Mha et R B A A B s i St St Wi i S S - At ) R BN B A i I A S D e 2 Clte e N e *aite il S Seudh il il o |
B ST R R . R i) . g . A f s )

Y} I

65

CHAPTER 4

CAPTURE BY CONTINUOUS NONLINEAR FEEDBACK CONTROL

4.1 Introduction -
The capture problem can also be solved by a feed-
back control approach in which the control vector, u, is a

function of the system state variables. 1In this chapter

a

Liapunov stability theory is employed to derive feedback

control laws which result in an asymptotic approach to the

@
QL.

final desired spin-stabilized state. Liapunov's indirect
or first method leads to a linear feedback control law
which guarantees the local asymptotic stability of the spin-
stabilized equilibrium. Global asymptotic stability is
achieved iarough a nonlinear feedback control law

derived from Liapunov's direct or second method and its
extension through LaSalle's theorem. This non-

linear control law is applied to the two-body system of

Figure 1 in an initial state of free spin and precession

. .o f B . . . N ‘
ale a4 e tal ,__-.' = _a_al. ‘44_444.. PONEE P W SR

P

of the target and free spin of the OMV. Numerical results

are presented to show state, control, and constraint load

.tV _ %atae 2

histories during capture. The motion during capture is

seen to be very benign, and the controls and constraint

N

loads seem to be within very manageable bounds.

s 2 ;A!u P
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the specified final state. On the other hand, different
constants in the torque constraint might yield a lower

cost.

3.8 Conclusions

Using an optimal control approach, continuous open

Y VPSS, N TR

loop controls have been produced that detumble the target
satellite. The capture process has been seen to be very

benign with no significant change in the attitude of the

spinning OMV while the two-body system was driven to a

final spin-stabilized state. When the five system controls

were unconstrained, only very moderate internal (joint) and

( external (thruster) torque magnitudes were required for a

W

very reasonable capture time of 300 seconds. Even with
various control constraints, control magnitudes were reason-

able, and the attitude of the OMV remained virtually

C ’
: undisturbed. In all cases the constraint loads at the 1
9

b .
{ joint indicate no requirement for a prohibitively massive 5
| .
l' or stiff structure to link the two bodies. Furthermore, é
. only small forces are required to translate the joint with @
- the desired constant velocity. ;
4

{ d

‘ 1
' 1
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k, = 0.001225 (4.15)
[ +0.046 0 0 0 0 ]
0 +0.046 0 0 0
B = 0 0 0.0 0 0 (4.16)
0 0 0 +0.07 O
0 0 0 0  +0.02
0 1 0
D = 0 0 1 (4.17)

-0.000064 -0.0048 -0.12 .

Byy and k4 critically damped the X,pr Xg sSystem giving two
equal eigenvalues of -0.035. The matrix, D, resulted by
specifying three equal eigenvalues, -0.04. Consequently,
both X¢ and y, were reduced to 0.05% of their initial
values in 300 seconds. While X, rose to a peak value
of -0.0045 radians per second, both Xy and Xg were reduced
at 300 seconds to values less than 0.5% of their peak
values. The values of Xyr Xgy and X3 were constant.

The histories of the system, (4.14), states, Yy,
Xgr Rgo and Xgy are shown in Figures 19 through 21.
Figure 19 plots the joint motion histories corresponding

to y. Figures 20 and 21 plot the histories of Xgr Xgo

and x which correspond as before to ?l' ?2, and Yy

6!
respectively. The joint velocity and ?l both remain quite

PO DGR W e { P . P S WP |
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small over the 300 second interval. Maximum joint

velocity of 0.0065 meters per second is achieved at 49

o

seconds while ?l peaks at -0.0045 radians per second at
28 seconds.

At each integration step the control vector, u,
was computed from equation (4.13), and the constraint
torque and constraint force were computed from equations
(2.45) and (2.49) with inputs from the system, (4.14).
The component of the constraint force in the éz direction
again gave the force required to move the joint. The
five control histories are shown in Figures 22 and 23.
Tl and TGl are seen to have similar profiles. T3 and TG2
oppose each other in sign but otherwise differ primarily
only in the first 50 seconds. When the performance index,
equation (3.1) is applied to these control histories a
value of 386.74 results. The constraint loads, as defined

in Chapter 3, are shown in Figure 24.

; 4.5 Summary and Conclusions

q

r The Liapunov stability theory has been applied to

E the two-body system of the capture problem to develop a

\

o nonlinear feedback control law which results in global

;. asymptotic stability of the Xy (m03) axis of the system

. state space. The ocontrol law contains no linear terms

: but does transform the original nonlinear dynamic system

¢

. ,
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into a linear system, which is easily analyzed. As an

example the free parameters of the control law were

specified to produce desired system response. Profiles

of the states, controls, and constraint loads were

developed by numerical integration of the resulting

linear system over a 300 second interval. While peak con-

trol torques and constraint loads do not appear excessive,

they directly depend on the specified parameters in the

control law. Consequently, these peaks can be reduced

by appropriately respecifying the control system gains.
With this same feedback control law, the motion

of the two-body system was seen to be very benign. From

initial conditions of free spin and precession of the

target and free spin of the OMV, the attitude of the

OMV and its spin rate do not change during capture. The

cone angle of the target decays as a second order linear

system while the target's spin rate decays as a first order

linear system. The joint moves to the é3 axis on the OMV
as a third order linear system, which is specified to
coordinate joint motion with cone angle decay. Conse-
quently, the complete system motion is easily visualized,
and the final orientation of the system can be deduced
without formal use of a complementary set of kinematic

equations for the OMV.
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CHAPTER 5

CONTROL SCHEME COMPARISONS AND CONCLUSIONS

5.1 Introduction

Two control strategies have been developed to
solve the remote orbital capture problem proposed in
Chapter 1. Optimal control theory was employed in Chapter
3 to solve for continuous open loop controls. Liapunov
stability theory was used in Chapter 4 to derive continu-
ous feedback controls. Numerical examples of both strate-
gies have shown that the motion of the two-body system is
very benign during capture.

In this chapter the numerical examples of both
control strategies are compared, and an example of using
both strategies in a sequence is presented. Significant
details of the previous chapters are reviewed, and some
conclusions are drawn. To close, several directions for

future work are suggested.

5.2 Control Scheme Comparisons

The numerical examples of open loop and feedback
control contain significant differences. Most significant
is that open loop controls drive the two-body system to
the specified final state exactly in the specified time
while the feedback controls give only an asymptotic

approach to that state. Second, the joint motion on the OMV
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1s specified differently in the two examples. Consequently,
the objective of the comparison is limited to forming some
idea of the ranges of the control torgque and constraint
load magnitudes that can occur with different control
strategies.

Table 5 shows the ranges of control torgque and con-
straint load magnitudes that occurred in the numerical
examples of unconstrained open loop control and feedback
control. Both examples considered a 300 second maneuver
time. 1In the case of feedback control, all states were
reduced to within 0.5% of equilibrium values from peak
values. Significant differences in the required control
torque magnitudes can be seen except for TG2. On the other
hand, the ranges of the constraint load magnitudes, F2,

FC, and TC, show smaller variations. But no attempt was
made to limit the ranges of the control torque and con-
straint load magnitudes. To the contrary, only a simple
scheme of selecting free parameters in the control law

was considered to obtain the desired dvnamic response of
the two-body system. Even so, the resulting forces and
torques do not appear prohibitive from control or struc-
tural considerations. As a final comparison recall that
the cost of capture, as measured by the performance index,
equation (3.l1), was 2.335 for unconstrained open loop con-

trol and 386.74 for feedback control. While this seems
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TABLE 5

Control and Constraint Load Ranges for Unconstrained
Optimal Open Loop Control and Feedback Control*

T1
(newton-meters)

T2
(newton-meéters)

T3
(newton-meters)

TGl
(newton-meters)

TG2
(newton-meters)

F2
(newtons)

FC
{newtons)

TC
(newton-meters)

*lu) uy uj v, ugl

TC

FC

F2

Open Loop

-0.012 to
+0.013

-0.246 to
+0.001

+0.0049 to
+0.0173

~-0.23 to
+0.21

+0.028 to
+0.200

-0.86 to
+0.12

+0.024 to
+0.270

-0.27 to
+0.54

[Tl T2 T3 TGl TG2]

Magnitude of constraint force

Component of constraint force in e

Dot product of constraint torque with

2

Feedback

-2.65 to
+1.74

-1.94 to
+0.39

-0.19 to
0.00

-2.01 to
+1.50

0.00 to
+0.28

-1.07 to
+0.58

0.00 to
+1.07

-0.25 to
+1.52

direction
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to indicate a clear advantage for open loop control, the
cost of feedback control could be very sensitive to the
choice of gains in the control law and the system describ-
ing the joint motion.

While the ranges of the control magnitudes for
the two examples are quite different, the motions of
the two-body system under the two control schemes are very

similar. With open loop control the OMV very nearly main-

tains a state of pure spin about its axis of maximum moment

of inertia. With feedback control, because of the initial

conditions, no deviation from the state of pure spin results.

In both cases the target cone angle and spin rate relative
to the OMV are smoothly eliminated as the connecting

joint moves to the §3 axis on the OMv. A final spin-

stabilized configuration results with either control scheme.

5.3 Capture by an Open Loop Control to Feedback
Control Seguence :

Open loop control cannot achieve the specified final

state exactly because of the presence of small system
errors. On the other hand, feedback control derived by
the Liapunov method can bring the two-body system arbi-
tarily close to the desired final state in a fixed time,
though perhaps at much greater cost. Therefore, a switch
during capture from open loop control to feedback control
might be considered. An example can be constructed using

the case of unconstrained optimal open loop control where
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a switch is made to feedback control after approximately
290 seconds of the nominal 300 second maneuver. From the
solution grid of the TPBVP, the state of the two-body
system at 289.655 seconds is given in Table 6. Allowing
an additional 130 seconds for nonlinear feedback control,
the free parameters of equation (4.13) are specified as

follows:

k4 = 0.00855625

[ +0.046

+0.046 0

+0.185

L 0 +0.02_| .

The joint motion, as defined by the system, (4.4), is spe-
cified by three equal eigenvalues of -0.11.

This example of switching from open loop to feed-
back control is constructed to achieve a slichtly differ-
ent response from that in the previous example of feedback
control. Here the joint position and Yq overshoot their
equilibrium values by 0.0021 meters and 0.0910 radians
respectively. However, relative to their values at 289.655
seconds, they return to within 0.01% of equilibrium after
130 seconds of feedback control. The values of Bll’ Bose

and 855 are arbitrarily left unchanged from the previous
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System State Summary for the Open Loop-Feedback Case

289.655 seconds
(termination of
optimal control)

wo1 -0.00061651 rad/sec
w2 0.00039625 rad/sec
w3 -0.10128 rad/sec

?l -0.0v13204 rad/sec

?2 -0.00057541 rad/sec
Yy 0.0068254 rad

Loy - &,  -0.020639 meters

iﬁl . éz 0.0019951 meters/sec
égl - e, 0.0 meters/sec?

Ly W Y

419.655 seconds
{termination of
feedback control)
-0.000001559 rad/sec
0.000001002 rad/sec
-0.10128 rad/sec
0.0000000417 rad/sec
-0.00004274 rad/sec
-0.000000496 rad
0.00000095 meters

-0.0000000895 meters/sec

0.0000000083 meters/sec?
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example of feedback.

To generate state, control, and constraint load his-
tories, the system, (4.14), can be integrated forward for
130 seconds. The control vector, u, can be computed from
egquation (4.13), and the constraint loads, from equations
(2.45) and (2.49) as before. Linking these histories with
those for optimal open loop control results in composite
histories for the 419.655 second interval. The system
states at the terminal time, 419.655 seconds are shown
in Table 6.

Figures 25 through 30 show the composite histories
of the states, controls, and constraint loads for the
419.655 second interval. The transition of four of the
states to exponential decay is clearly shown. The spin
rate, Wy 3 is constant over the last 130 seconds since
833 = 0. The sixth state, Y1+ also decays exponentially,
but scaling prevents its depiction. The decay of the con-
trols and constraint loads is also clear, but more apparent
are the sudden changes which occur at the switching point.
Modifying the system response might bring the feedback
controls closer to the open loop controls at the switch.

A related control strategy would be to allow the
optimal controller to execute completely its precomputed
control histories, and then reduce any residual errors

with feedback control. Finally, the joint would be locked
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to give a single, spin-stabilized, rigid body. From the
example above, the system state of 289.655 seconds could
be considered the state actually achieved after 300
seconds of open loop control. Then the same 130 seconds
of additional feedback control from the example would
result 1in the system state given in Table 6 for 419.655
seconds. In this case, however, the total maneuver time
would be 430 seconds. The control cost of this strategv
from equation (3.lf is the open loop cost plus the feed-
back cost, which would be 2.335 + 1.400 = 3.735. There-
fore, if feedback control should prove to be impractical
for the complete capture maneuver, this dual control stra-

tegy might be a good compromise.

5.4 Summary and Conclusions

The problem of remote orbital capture has been
addressed fron a more realistic approach than others
found in the literature. Previous work has not effectively
considered the requirement to control the absolute motion
of the two-body system as relative motion between the two
bodies is eliminated. Here a control problem based on the
coupled dynamics of a two-body system was considered.
Eulerian-based equations of motion were derived which
accounted for a novel concept: The joint connecting the
two bodies is allowed to translate along the surface of

one of the bodies. Derivation of these equations was
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motivated by interest in a very specific capture problem,
that of detumbling a freely spinning and precessing axially
symmetric statellite by a spinning axially symmetric
retriever spacecraft. This initial configuration is
dynamically stable, and joint motion on the surface of the

retriever spacecraft makes possible a final spin-stabilized

configurétion. The Eulerian-based equations of motion allow

internal and external torques on the two-body system to
be specified, so the capture problem became one of find-
ing control profiles or control laws to drive the two-body
system to a spin-stabilized final state.

Since the posed capture problem is nonlinear,
optimal control theory was employed first to solve for
open loop control profiles. Optimal control theory had
not been applied previously to this type of multi-body
problem, but difficulties were expected from results of
optimal control of single rigid bodies. 1In particular, the
problem in which the final orientation of the two-body
system is completely specified is very difficult to solve
numerically because the kinematic Euler parameter equations
are not independent. Consequently, these equations were
eliminated from the problem by leaving the final Euler
parameters unspecified. Of the two remaining kinematic
equations, one was also eliminated because of symmetry.

The one kinematic equation retained and the appropriately
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specified joint motion were sufficient to achieve the final
spin-stabilized state. The results of the optimal open
loop control investigation, however, pointed out that
virtually nothing was lost from these simplifications since
the orientation of the spin axis of the retriever space-
craft was very nearly constant during capture. Control
requirements seem quite reasonable for maneuver times of
five minutes and with control constraints more typical of
an actual system. Finally, the constraint loads on the
joint seem to impose no prohibitive structural requirements
or control requirements to effect the prescribed joint
motion.

A second approach to the nonlinear control prob-
lem was to develop a feedback control law by using Liapunov
stability theory. The Liapunov indirect method showed how
linear feedback could produce an asymptotic approach to
the spin-stabilized equilibrium from within some local
region of the equilibrium. Difficulty in determining the
size of that region led to a nonlinear feedback control
law derived from Liapunov's direct method and LaSalle's
theorem. The nonlinear control law, when applied
to the dynamic equations, transformed the original non-
linear system to a linear system, which was analyzed
numerically to determine control and constraint load

profiles. The analysis was keyed to achieving desired
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svstem response with little attention to limiting controls
and constraint loads. Consequently, when a very close
approach to spin-stabilized equilibrium was required in

a maneuver time of five minutes, peak controls and con-
straint loads were significantly greater than those for
oovtimal open loop control. However, even here peak magni-
tudes were not large. Furthermore, these peaks might be
reduced significantly by a more systematic approach to
parameter selection in the control law and the system
describling the joint motion.

The final approach considered for solving the
capture problem used optimal open loop control first. Then
residual errors were eliminated by nonlinear feedback con-
trol. Here again, specifying system performance led to
significant increases in peak controls and constraint
loads at the initiation of feedback control. On the other
hand, these peaks were at least 65% less than those ob-
tained by using only feedback control for capture. A much
further reduction was expected, but this again pointed
out the need for further investigation into parameter
selection for the feedback control law and the joint
motion.

As with optimal open loop control, the feedback
control approach did not control the complete absolute

orientation of the two-body system. However, feedback
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control was initiated with the retriever spacecraft in

or near a state of pure spin about its symmetry axis.

Then by design the controls either maintained pure spin

or produced pure spin with little change in spin axis
orientation. Consequently, the two control approaches are
consistent, producing similar results.

To summarize, the work presented here is signifi-
cant in several respects. First, the field o f multi-body
dynamics has been extended by the general equations of
motion derived in Chapter 2. Second, optimal control
theory has been applied to the problem of remote orbital
capture through these equations to address control require-
ments more realistically than previous work. Third, a
nonlinear feedback control approach to orbital capture
has been demonstrated. Finally, structural requirements
of the joint in the two-body system have been considered
by solving for the constraint loads on the joint during

capture.

5.5 Suggestions for Further Research

While this work has audressed a very special cap-
ture problem, a foundation has been laid to move forward
to more general problems. The equations of motion can be
extended to asymmetric target satellites and to retriever

spacecraft with reaction wheel control systems. Rendezvous

and docking strategies must be developed that consider more
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general dynamic states of the target. Convenient rigid
appendages may not be present on prospective targets,

so deployment of grappling devices from the joint on the

retriever spacecraft needs to be considered. These are

@ WL e L

only three of many possible extensions of the work pre-

sented here, but they point out significant areas that

S require investigation.
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